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ABSTRACT

Pseudo-transient continuation (Otc) is a well-known and physically motivated tech-

nique for computation of steady-state solutions of time-dependent partial differential

equations. Standard globalization strategies such as line search or trust region meth-

ods often stagnate at local minima, qJtc succeeds in many of these cases by taking

advantage of the underlying PDE structure of the problem. Though widely employed,

the convergence of _tc is rarely discussed. In this paper we prove convergence for a

generic form of _tc and illustrate it with two practical strategies.
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1. Introduction. Pseudo-transient continuation (@tc) is a method for compu-

tation of steady-state solutions of partial differential equations framed in a time-

dependent setting, :r' = F(x). Here
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ot

and spatial variables and derivatives are contained in the nonlinear term F(x). March-

ing out the steady state by following the physical transient may be unnecessarily time

consuming if the intermediate states are not of interest. On the other hand, Newton's

method for F(x) = 0 alone will usually not suffice, as initial iterates sufficiently near

the root are usually not available. Standard globalization strategies [12, 17, 24], such

as line search or trust region methods often stagnate at local minima of ][F]] [19].

This is particularly the case when the solution has complex features such as shocks

that are not present in the initial iterate (see [23], for example), k0tc succeeds in

many of these cases by taking advantage of the PDE structure of the problem.

1.1. The Basic Algorithm. In the simple form considered in this paper, @tc

numerically integrates the initial value problem

(1.1) x'= -V-IF(x), x(O)= Xo

to steady state using a variable timestep scheme that attempts to increase the timestep

as F(x) approaches 0. V is a nonsingular matrix used to improve the scaling of the

problem.

We can define the kOtc sequence {xn} by

(1.2) Xn+ 1 = X n -- ((5n1_/" -_- F'(xn))-lF(xn)

where F' is the Jacobian (or the Frdchet derivative in the infinite-dimensional situa-

tion). Algorithmically,

ALGORITHM 1.1.

I. Set x = Xo and 5 = 50. Evaluate F(x).

2. rgq,ile IlF(x)ll is too large.

(a) Solw (_-'r r + F'(.))_ =-F(_).
(b) Set x= x + s.

(c) Evaluate F(x).

(d) Update 5.

The linear equation

(1.3) (6-'V + F'(x))s =-F(x)

for the Newton step that. is solved in step 2a is often the discretization of an elliptic

PDE. As such, it is typically solved by an iterative method which terminates on small
1



linear residuals. This results in an inexact method [11], and a convergence theory for

_l/tc must account for this. We have not yet explained how (5is updated, nor explored

the reuse of Jacobian information from previous iterations. These options must be

considered to explain the performance of k0tc as practiced, and we take them up in

§ :3. In order to most clearly explain the ideas, however, we begin our analysis in § 2

with the most simple variant of _tc possible and then extend those results to the

more general situation.

As a method for integration in time, _I/tc is a Rosenbrock method ([14], p. 223)

if $ is fixed. One may also think of this as a predictor-corrector method, where the

simple predictor (result from the previous timestep) and a Newton corrector are used.

To see this consider the implicit Euler step from x_ with timestep (5_,

(1.4) z_+l = xn - 6nV-1F(zn+l).

In this formulation z_+l would be the root of

G(_) = ( + 5,dS-lF(_) - xn.

Finding a root of G with Newton's method would lead to the iteration

_k+a = _k - (I + (_n _fl-l Ft(_k ) )-l(_k + (_nV -1F(_k) -- xn)

If we take _0 = x,_ the first Newton iterate is

_1 = Xn - (I + 6,V-1F'(x,_))-aS,Y-IF(x,_) = x,_ - (6;IV + F'(x,_))-lF(x,_).

This leaves open the possibility of taking more corrector iterations, which would lead

to a different form of _tc than that given by (1.2). This may improve stability for

some problems [16].

1.2. Time Step Control. We assume that 6n is computed by some formula like

the "switched evolution relaxation" (SER) method, so named in [20], and used in,

e.g. [18], [23], and [32]. In its simplest, unprotected form, SER increases the timestep

in inverse proportion to the residual reduction.

(1.5) = ¢5ollf(xo)ll/ltF(x )ll.

(1.5) implies that, for n _> 1,

_n ----" (_n-1
IIF(x, - )ll

IIF(xn)ll

In some work [16], 6_ is kept below a large, finite bound 5m_x. Sometimes 6, is set

to oc (called "switchover to steady-state form" in [13]) when the computed value of 6,



exceeds 6,_ax. In view of these practices, we will allow for somewhat more generality

in the formulation of the sequence {£_}. We will assume that 6o is given and that

iIF(x -l)ll (1.6) _n = 0 (_n-1 _ ] •

for 7_ _> 1. Here, is an increasing function with values in (0, oc]. The choice in [23]

and [32](equation (1.5))is

e(i) =i.

Other choices could either limit the growth of 6 or allow 6 to become infinite after

finitely many steps. One variation that allows for all of these possibilities is

(1.7) _(_) = 5ma_- ai > _,

So if it = oo then _(1) = oi. If (t = 6m,,:/a < e_ then

¢(_) = min(cti, 5max )

and the timesteps are held bounded. If _t < c_ and 5max = CX3then switchover to

steady-state form is permitted after a finite number of timesteps.

In [16] the timesteps are based not on the norms of the nonlinear residuals

IIf(_,)li but on the norms of the steps II_-_-lli. This policy has risks in that small

steps need not imply small residuals or accurate results. However if the Jacobians

are uniformly well conditioned, then small steps do imply that the iteration is near a

root. Here formulae of the type

are used, where _b has the properties mentioned above. The function given by (1.7),

for example, is a reasonable candidate.

Our formal assumptions on the function ¢5are

ASSUMPTION 1.1.

1. _ is an increasing function valued in (0, oc].

2. ch has a maximum value, 6m_,, E (0, _] which is attained at it E (0, vc].

3. O(_) >_ c_ for all i E (0, (t].

/_. Either It = 5m_/o or it < cx_ and 5m_,: = oo.

1.3. Iteration Phases. We divide the qStc iteration into three conceptually

different and separately addressed phases.

1. The initial phase. Here 6 is small and x is far from a steady state solution.

This phase is analyzed in § 2.3. Success in this phase is governed by stability

and accuracy of the temporal integration scheme and proper choice of initial

data.



2. The midrange. This beginswith an accurate solution x and a timestep 6

that may be small and produces an accurate x and a large 6. We analyze

this in § 2.2. To allow 6 to grow without loss of accuracy in x we make a

linear stability assumption (part 4 of Assumption 2.1).

3. The terminal phase. Here 6 is large and x is near a steady state solution.

This is a small part of the iteration, usually requiring only a few iterations.

Aside from the attention that must be paid to the updating rules for 6, the

iteration is a variation of the chord method [24, 17].

We analyze the terminal phase first, as it is the easiest, in § 2.1. Unlike the other

two phases, the analysis of the terminal phase does not depend on the dynamics

of x I = -V-IF(x). The initial and midrange phases are considered in § 2.3, with

the midrange phase considered first to motivate the goals of the initial phase. This

decomposition is similar to that proposed for GMRES and related iterations in [21]

and is supported by the residual norm plots reported in [23] and [10].

2. Exact Newton Iteration. In this section we analyze the three phases of

the solver in reverse order. This ordering makes it clear how the output of an earlier

phase must conform to the demands of the later phase.

2.1. Local Convergence: Terminal Phase. The terminal phase of the iter-

ation can be analyzed without use of the differential equation at all.

LEMMA 2.1. Let {6_} be given by either (1.6) or (1.8) and let Assumption 1.1

hold with a < 1. Let F(x') = 0, F'(x*) be nonsingular, and F' be Lipschitz continuous

with Lipschitz constant "7 in a ball of radius e about x*.

Then there are e, > 0 and As, such that if > a0 and Ilxo- x'll < q,
then the sequence defined by (1.2) and (1.6) satisfies

n '-+ _ma_:_

and xn ---* x" q-superlinearly if 6m_ = cx_ and q-linearly if _,_ < _.

Proof. Let e = x - x" denote the error. As is standard, [12], [17], we analyze

convergence in terms of the transition from a current iterate x_ to a new iterate x+.

We must also keep track of the change in E and will let 6¢ and 6+ be the current and

new pseudo-timesteps.

The standard analysis of the chord method ([17], p. 76) implies that there are

e1 ___e and Kc such that if Ile ll < el,

(2.1) I1 +11 Kc(lle ll + C'll cll),

So if 6_ _> A0 and

(_1 + As -1 <_ 1/(2Kc),



then I1_+11_ Ilecll/2 and, in particular, F(x+) is defined. Reduce 51 and increase -/-/X0

if needed so that

(2.2) e, + A0-' _< a/(8tc(F'(x'))) and 51 _ 3/C_,

where x denotes condition number and a is from part 3 of Assumption 1.1. Equations

(2.1) and (2.2) imply that

(2.3) ]le+t] < ]]e_ll(el + A0 -1) _< x(F,(x-))'

If {6.} is computed with (1.6) we use the following inequality from [17] (p. 72)

II_+ll < IIF(x+)II < 4_(F'(x*))ll_+ll
(2.4) 4_(F'(x'))lle=lI- IIF(xc)ll- II_=ll '

and (2.3) to obtain

IlY(xc)ll> IleAl > 2_-'.
IIF(x+)ll- 4_(F'(x*))lle+ll-

We then have by' Assumption 1.1 that

{ 6ma_, 6ca>56+- ¢(6cllY(xc)ll/llY(z+)ll)>_,(26_/a) >
26_, 6_a < 4t

where _t is from part 2 of Assumption 1.1.

If {6n} is computed with (1.8), we note that

Ilx+- xcll _<I1_+11+ II_ll-<3t1_c11/2_<3q/2 _< or/2

and hence

f 6max,

( 26¢,

as before.

In either case, 6+ _> 6c >__Ao and Ile+ll _<Ile_ll/2. Therefore we may" continue the

iteration and conclude that 6,, ---+5_ and Ile_ll --+ 0 at least q-linearly with q-factor

of 1/2.
If 6,_ = ec, we complete the proof by observing that since 6,_ _ oc and x_ _ x"

q-superlinear convergence follows from (2.1). D

The following simple corollary of (2.1) applies to the choice _b(_) = c_.

COrtOLLARY 2.2. Let the assumptions of Lemma 2.1 hold. Assume that oh(4) =

<. I1_oll<_q, 60 _ ,% _d 6m_ = o_. Then the convergenceof {x,_} to x* is

q-quadratic.
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2.2. Increasing the Time Step: Midrange Phase. Lemma 2.1 states that

the second phase of _tc should produce both a large 5 and an accurate solution. We

show how this happens if the initial phase can provide only an accurate solution.

This clarifies the role of the second phase in increasing the timestep. We do this by

showing that if the steady state problem has a stable solution, then _tc behaves well.

We now make assumptions that not only involve the nonlinear function but also the

initial data and the dynamics of the IVP (1.1).

ASSUMPTION 2.1.

1. There is a root x* of F that satisfies the standard assumptions and _ > 0

such that if IIz -x01I < r/then the solution of the initial value problem

(2.5) ' -1F() (0)X _-Y x _x =z

converges to x" a.s t --+ c_o.

2. F is everywhere defined and Lipschitz continuously Frdchet differentiable

3. ]IF'(x)][ <_ M for all x, for some M > 0

4. There are _2,_3> 0 such that ifllx- x*t] _<_2 then ]l(I + _V-'F'(_))-'I] <
(1 + f16) -1 for all ¢5>_ O.

The analysis of the midrange uses part 4 of Assumption 2.1 in an important way

to guarantee stability. The method for updating 6 is not important for this result.

THEOREM 2.3. Let {6_} be given by either (1.6) or (1.8) and let Assumption 1.1

hold with a < 1. Let Assumption 2.1 hold. Let 6_,_ be large enough for the conclu-

sions of Lemma 2.1 to hold. Then there is an ea > 0 .such that if IIz0- **1t< {[3, and

50 > O, either

inf 6,_ = 0
n

07" x,_ --+ x* and 6,_ ---+¢5m_,.

Pro@ Let e3 < rain(q, e2) where el is from Lemma 2.1 and e2 is from part 4 of

Assumption 2.1. Note that

C 1 = eO-- (1 -_- (_o_'r-lFt(Xo))-l_oV-11_(Xo)

= ¢o-- (I + 5oV-1F'(xo))-16oV-1F'(xo)eo

+(I + 5oV-XF'(xo))-15oV-_(F'(xo)eo - F(xo))

= (I + 6oV-1F'(xo))-'eo + (I + 6oV-_F'(xo))-'5oV-'(F'(zo)eo - F(xo))

Now there is a c > 0 such that

IIV-l(F'(x)e - F(x))ll _<cllel[2



for all x such that Iiell < q. Hence, reducing _3 further if needed so that e3 < fl/(2c),

we have

(2.6) II_,II-<lleoll -i ___ I -<II_olI i + _6 ) < II_olI.

If inf_ 6,_ = 5" > 0 then

for all n _ 1 and hence x_ converges to x" q-linearly with q-factor (1 +fl6"/2)(1 +_5").

This convergence implies that s_ _ 0 and F(x,_) _ 0 so 6_ _ 6,_a_ if either (1.6)

or (1.8)is used. D

This result says that once the iteration has found a sufficiently good solution,

either convergence will happen or the the iteration will stagnate with inf6, = 0. This

latter failure mode is, of course, easy to detect. Moreover, the radius e3 of the ball

about the root in Theorem 2.3 does not depend on inf 6_.

2.3. Integration to Steady State: Initial Phase. Theorem 2.3 requires an

accurate estimate of x _, but asks nothing of the timestep. In this section we show that

if 50 is sufficiently small, and (1.6) is used to update the timestep, then the dynamics

of (1.1) will be tracked sufficiently well for such an approximate solution to be found.

It is not clear how (1.8) allows for this.

THEOREM 2.4. Let {6n} be given by (1.6) and let Assumption 1.1 hold with

a < 1. Let Assumption 2.1 hold. Let c > O. There is a_ such that if6o < 5 then

there is an n such that ][en]l < e.

Proof. Let ,5' be the trajectory of the solution to (2.,5). By Assumption 2.1 x"

satisfies the standard assumptions and therefore there are e4 and eS such that if

I1_- yll < e_for some y E 3 and IIF(_)II< _j

then fix - x']] < (:3, which will suffice for the conclusions of Theorem 2.3 to hold. Let

M = sup IIF(_)II.
Iix-yll<_4 for some y E S

We will show that if 60 sufficiently small, then tlx_- _(t_)ll _<_ until tlF(_k)ll <

_s. By (1.6)

(2.x) C55o =- 5ollF(:ro)tl/M__5k5 6ollF(xo)ll/cf _ Cu6o

as long as IIF(x)ll >__eS and xk is within e4 of the trajectory $. Let T > 0 be such

that if z is the solution to (2.5), t _> T, and IIx - z(t)l I < e4 then IIf(x)ll < _j.



Let z be the solution of (2.5). Consider the approximate integration of (2.5) by

(1.2). Set

tn = _t-
l=O

If Hxn-z(t_)[[ < e4 and ][F(x_)H _> ef then (2.7) holds. This cannot happen ift, > T

and therefore the proof will be complete if we can show that

llx,_- z(t,,)ll < q

until the first n such that, liF(x)ll < _s, which will happen for some

(2.8) n <_ CLT/_5o:

Note that (1.2) may be written as

(2.9) x,_+I=x,_-_,_V-1F(x,_)+[I-(I+5,_V-1F'(x_))-I]6nV-1F(xn).

There is an ml such that, the last term in (2.9) satisfies, for 6n sufficiently small and

Ilz_- a(t,,)tl < e4,

(2.10) I1[/-(I + £_V-XF'(xn))-*]&W-1F(xn)[I < rn,6 2.

Let En = [[x,_ - z(t,_)l [. Then we have, by our assumptions on F, that there is

an M1 > 0 such that

(2.11) I1=_ -4- _n V-1F(xn) - X(_n) -- x'(t,,)6,,ll<_,_/16_,_En.

Finally, there is an rn2 such that for for _5,_sufficiently small and fix. - z(t,_)ll < e,

__ ?./ 2

Setting 312 = rnl + m2 we have for all n > 1 (as long as _Snis sufficiently small

and Hxn- z(tn)[[ < e4)

2
En < (1 + Ml_Sn-1)E,_-I + M26,__ i.

As long as (2.7) holds, this implies that

2 2
E_ < (1 + M1Cu6o)E,_-I + M2Cu_5 o.

Consequently, as is standard [14, 15],

aoM=Cu[exp(nM_Cv6o) - 1]
E_<

M1
8



and using (2.8),

(2.12)

So if

(2.13)

M2Cu[exp(CLM, CuT) - 1]
E,_ <_ (5o

M1

M1

6o <
e4 M2Cu[exp(CLMICuT ) - 1]

then Itz,_ - z(tn)ll < e4 for all n until F(xn) < ef or t_ > T. This completes the proof.

[3

The problem with application of this proof to the update given bv (1.8) is that

bounds on 6 like (2.7) do not follow from the update formula.

3. Inexact Newton Iteration. In this section we look at q2tc as implemented

in practice. There are two significant differences between the simple version in § 2

and realistic implementations:

1. The Fr6chet derivative 6_1V+ F'(xn) is not. recomputed with every timestep.

2. The equation for the Newton step is solved only inexactly.

Before showing how the results in § 2 are affected by these differences, we provide

some more detail and motivation.

Item 1 is subtle. If one is solving the equation for the Newton step with a direct

method, then evaluation and factorization of the Jacobian matrix is not done at every

timestep. This is a common feature of many ODE and DAE codes, [29, 25, 26, 3].

Jacobian updating is an issue in continuation methods [30, 27], and implementations

of the chord and Shamanskii [28] methods for general nonlinear equations [2, 17,

24]. When the Jacobian is slowly varying as a function of time or the continuation

parameter, sporadic updating of the Jacobian leads to significant performance gains.

One must decide when to evaluate and factor the Jacobian using iteration statistics

and (in the ODE and DAE case) estimates of truncation error. Temporal truncation

error is not of interest to us, of course, if we seek only the steady-state solution.

In [16] a Jacobian corresponding to a lower-order discretization than that for the

residual was used in the early phases of the iteration and in [18], in the context of a

matrix-free Newton method, the same was used as a preconditioner.

• The risks in the use of inaccurate Jacobian information are that termination deci-

sions for the Newton iteration and the decision to reevaluate and refactor the Jacobian

are related and one can be misled by rapidly varying and ill-conditioned Jacobians

into premature termination of the nonlinear iteration [29, 31]. In the case of itera-

tire methods, item 1 should be interpreted to mean that preconditioning information

(such as an incomplete factorization) is not computed at every timestep.

Item 2 means that the equation for the Newton step is solved inexactly in the

sense of [11], so that instead of

(3.1) x+ = zc + s
9



wheres is given by' (1.3), step s satisfies

(3.2) 1t(5-1V + F'(x))s + F(x)ll_ _IIF(x)II,

for some small r/, which may change as the iteration progresses. Item 1 can also be

viewed as an inexact Newton method with r/ reflecting the difference between the

approximate and exact Jacobians.

The theory in § 2 is not changed much if inexact computation of the step is

allowed. The proof of Lemma 2.1 is affected in (2.1), which must be changed to

(3.3) Ile+tl  /¢c(lle ll 2+ [6:' +  c]lleclt).

This changes the statement of the lemma to

LEMMA 3.1. Let {5,_} be given by either (1.6) or (1.8) and let Assumption 1.1

hold with c_ < 1. Let F(x') = O. F'(x*) be nonsingular, and F' be Lipschitz continuous

with Lipschitz constant 7 in a ball of radius e about x*.

Then there are _1 > O, 0 and A0 such that if Sm_,:,60 > A0, r/,_ > f/ for all n, and

llxo- x'll < q, then the .sequence defined by (3.1), (3.2), and (1.6) satisfies

5r_ '+ 5max

and x,_ _ x" q-superlinearly if 6m_,: = cx_ and rl,_ _ 0 and q-linearly if 5,_ < oz.

Corollary 2.2 becomes

COROLLARY 3.2. Let the assumptions of Lemma 3.1 hold. Assume that ¢(_) =

_. Ileoll _< e,, 50 >_ and 5,,,_ = _a. Then the convergence of {x,_} to x" is

q-superlinear if rln _ O, and locally q-quadratic if rl,_ = O(llf(x.)ll).
The analysis of the midrange phase changes in (2.6), where we obtain

1 + ce35_(3.4) Ile, ll _< Ileoll K,,7o + i _-_g ] < Ile°ll"

for some K_ > 0. This means that 0 must be small enough to maintain the q-linear

convergence of {x,_} during this phase. The inexact form of Theorem 2.3 is

THEOREM 3.3. Let {x,} be given by (3.1) and (3.2) and let {6,} be given by

either (1.6) or (1.8). Let Assumption 1.1 hold with c_ < 1. Let Assumption 2.1 hold.

Let 5_: be large enough for the conclusions of Lemma 2.1 to hold. Then there are

_3 > 0 and (7 such that if rln <_ _, liT0- z'll < _, and 5o > O, either

inf 6,_ = 0
72

or xn _ x* and 5,_ _ 5_.

Inexact Newton methods, in particular Newton-Krylov solvers, have been applied

to ODE/DAE solvers in [1], [5], [4], [6], [7], and [9]. The context here is different in

10



that the nonlinear residual F(x) does not reflect the error in the transient solution

but, in the stead)' state solution.

The analysis of the initial phase changes through (2.10). We must now estimate

&_V-1F(xn) + s,_.

Set r = (SglV + F'(x,_))s_ + F(x_). Note that

5_V -1F(x,) + s_ = 6, V-'(F(x,) + ¢SnlVsn)

=_nV-l(r-F'(xn)sn).

Now_

sn = (I -}-¢SnV-1F'(xn))-lcSnV-l(r- F(x.))

and hence, assuming that the operators (I + 5,_V-1F'(x,_)) -_ are uniformly bounded,

there is rn3 such that

and hence

(3.5) ]lS_V-1F(x_)-4- s_ll _[Iv-1ll(7/_llf(x_)l[-4-Ilr'(x_)llm35_).

We express (3.5) as

(3.6) IIS V-1F(x=)+ -<rn4( n( n-[- _2).

Hence, if 7/n = 0(50) or r/_ = O(En) we still obtain (2.12) and the inexact form

of Theorem 2.4:

THEOREM 3.4. Let {xn} be given by (3.1) and (3.2) and let {6n} be given by

(1.6). Let Assumption 1.1 hold with a < 1. Let Assumption 2.1 hold. Assume that

the operators (I + 6,_V-1F'(x,_)) -1 are uniformly bounded in n. Let e > O. There are

and 0 such that if So <_ 5 and rl,_ <_ fl then there is an n such that I1  [I < e.

The restrictions on 7/in Theorem 3.4 seem to be stronger than those on the results

on the midrange and terminal phases. This is consistent with the tight defaults on the

forcing terms for Newton-Krylov methods when applied in the ODE/DAE context

[1, 5, 6, 7, 9].

4. Numerical Experiments. In this section we examine a commonly used _tc

technique, switched evolution/relaxation (SER) [20], applied to a Newton-like method

for inviscid compressible flow over a four-element airfoil in two dimensions. Three

phases corresponding roughly to the theoretically-motivated iteration phases of § 2

may be identified. We also compare SER with a different _tc technique based on
11
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FIG. 4.1. Unstructured ffrtd around four-element airfoil in landtng configuration -- near-field

view.

bounding temporal truncation error (TTE) [19]. TTE is slightly more aggressive

than SER in building up the time step in this particular problem, but the behavior

of the system is qualitatively the same.

The physical problem, its discretization, and its algorithmic treatment in both a

nonlinear defect correction iteration and in a Newton-Krylov-Schwarz iteration -- as

well as its suitability for parallel computation -- have been documented in earlier pa-

pers, most recently [10] and the references therein. Our description is correspondingly

compact.

The unknowns of the problem are nodal values of the fluid density, velocities,

and specific total energy, x = (..., pl, ui, vi, ei,...)r at N vertices in an unstructured

grid of triangular cells (see Fig. 4.1). The system F(z) = 0 is a discretization of the

steady Euler equations:

(4.1) v. (p,,) = o
(4.2) V.(pvv+pI) = 0

(4.3) 27. ((pc + p)v) = 0

12



where the pressure p is supplied from the ideal gas law, p = P(7- 1)(e -lv[2/2), and 7

is the ratio of specific heats. The discretization is based on a control volume approach,

in which the control volumes are the duals of the triangular cells -- nonoverlapping

polygons surrounding each vertex whose perimeter segments join adjacent cell centers

to midpoints of incident cell edges. Integrals of (4.1)-(4.3) over the control volumes

are transformed by the divergence theorem to contour integrals of fluxes, which are

estimated numerically through an upwind scheme of Roe type. The effective scaling

matrix V for the _tc term is a diagonal matrix that depends upon the mesh.

The boundary conditions correspond to landing configuration conditions: sub-

sonic (Mach number of 0.2) with a high angle of attack of (5°). The full adaptively

clustered unstructured grid contains 6,019 vertices, with four degrees of freedom per

vertex (giving 24,076 as the algebraic dimension of the discrete nonlinear problem).

Figure 4.1 shows only a near-field zoom on the full grid, whose far-field boundaries

are approximately twenty chords away. The initial pseudo-timestep, _0 _ 3 x 10 .4

corresponds to a CFL number of 20. The pseudo-timestep is allowed to grow up to

six orders of magnitude over the course of the iterations. It is ultimately bounded at

_ = 106. 60 guaranteeing a modest diagonal contribution that aids the invertibility

of (_-'V -4- F'(xn)) -1.

The initial iterate is a uniform flow, based on the far field boundary conditions

-- constant density and energy, and constant velocity at a given angle of attack.

The solution algorithm is a hybrid between a nonlinear defect correction and a full

Newton method, a distinction which requires further discussion of the processes that

supply F(x) and F'(x) within the code. The form of the vector-valued function F(x)

determines the quality of the solution and is always discretized to required accuracy

(second-order in this paper). The form of the approximate Jacobian matrix F'(x),

together with the scaling matrix V and time step _5, determines the rate at which

tile solution is achieved but does not affect the quality of a converged result, and

is therefore a candidate for replacement with a matrix that is more convenient. In

practice, we perform the matrix inversion in (1.2) by Krylov iteration, which requires

only the action of F'(x) on a series of Krylov vectors, and not the actual elements

of F'(.r). The Krylov method was restarted GMRES(20) preconditioned with 1-cell

overlap additive Schwarz (8 subdomains).

Following [.5, 8], we use matrix-free Fr&het approximations of the required action:

(4.4) l[F(x + hv)- F(x)]
F' (x ) v ,_ -_

However, when preconditioning the solution of (1.2), we use a more economical matrix

than the Jacobian based on the true F(x), obtained from a first-order discretization

of the governing Euler system. This not only decreases the number of elements in

the preconditioner, relative to a true Jacobian, but also the computation and (in

the parallel context) communication in applying the preconditioner. It also results

13



Residual, Update, and Timestep for SER
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FIG. 4.2. $ER convergence history

q

m

w

d

5O

in a more numerically diffusive and stable matrix, which is desirable for inversion.

The price for these advantages is that the preconditioning is inconsistent with the

true Jacobian, so more linear subiterations may be required to meet a given linear

convergence tolerance. This has an indirect feedback on the nonlinear convergence

rate, since we limit the work performed in any linear subiteration in an inexact Newton

sense.

In previous work on the Euler and Navier-Stokes equations [10, 22], we have noted

that a _tc method based on a consistent high-order Jacobian stumbles around with a

nonmonotonic steady-state residual norm at the outset of the nonlinear iterations for

a typical convenient initial iterate far from the steady-state solution. On the other

hand, a simple defect correction approach, in which F'(z) is based on a regularizing

first-order discretization everywhere it appears in the solution of (1.2), not just in the

preconditioning, allows the residual to drop smoothly from the outset. In this work,

we employ a hybrid strategy, in which defect correction is used until the residual norm

has fallen by three orders of magnitude, and inexact Newton thereafter. As noted in

§ 3, inexact iteration based on the true Jacobian and iteration with an inconsistent

Jacobian can both be gathered under the r/of (3.2), so the theory extends in principal

to both.

With this background we turn our attention to Fig. 4.2, in which are plotted

on a logarithmic scale against the _tc iteration number: the steady-state residual

norm IIf(xn)ll2 at the beginning of each iteration, the norm of the update vector

Ilxn+l - _nll_, and the pseudo-timestep 3,_.

The residual norm falls nearly monotonically, as does the norm of the solution

14



update. Asymptotic convergencecannot beexpectedto be quadratic or superlinear,
sincewedonot enforcer/_ -_ 0 in (3.5). However, linear convergence is steep, and our

experience shows that overall execution time is increased if too many linear iterations

are employed in order to enforce r/n -_ 0 asymptotically. In the results shown in this

section, the inner linear convergence tolerance was set at 10 -2 for the defect correction

part of the trajectory, and at 10 -3 for the Newton part. The work was also limited

to a maximum of 12 restart cycles of 20 Krylov vectors each.

Examination of the pseudo-timestep history shows monotonic growth that is grad-

ual through the defect correction phase (ending at 77,= 14), then more rapidly grow-

ing, and asymptotically at _ma:- (beginning at n = 20). Steps 21, 24, and 32 show

momentary retreats from &a_ in response to a refinement on the O)tc strategy that

automatically cuts back the pseudo-timestep by a fixed factor if a nonlinear resid-

3 is achieved at the exhaustion of the maximum numberual reduction of less than

of Krylov restarts in the previous step (during the terminal Newton phase). Close

examination usually reveals a stagnation plateau in the linear solver, and it is more

cost effective to fall back to the physical transient to proceed than to grind on the

ill-conditioned linear problem. These glitches in the convergence of IIF(xn)l[2 are not

of nonlinear origin.

Another t imestep policy, common in the ODE literature, is based on controlling

temporal truncation error estimates. Though we do not need to maintain temporal

truncation errors at low levels when we are not attempting to follow physical tran-

sients, we may maintain them at high levels as a heuristic form of stepsize control.

This policy seems rare in external aerodynamic simulations, but is popular in the

combustion community and is implemented in [19]. The first neglected term in the

Ox is 1 ttEuler discretization of _ _x • 6 2, so a reasonable mixed absolute-relative bound

on the error in the ith component of x at the n th step is

I 2 02x,_ . I

&

(4.5) " 2(1 -t-I_,1) _<

where (xi'),_ can be approximated by

2 -
&-i + &-2 &-I

_
6n_2 ]

3 and implementing this strategy in the Euler code in place of SERTaking _- as

yields the results in Fig. 4.3. Arrival at &_, occurs at the same step as for SER, and

arrival at the threshold ]tF(x,OII < 10 -_2 occurs one iteration earlier. However, the

convergence difficulties after having arrived at _m_ are slightly greater.

5. Conclusions. Though the numerical experiments of the previous section do

not confirm the theory in detail, in the sense that we do not verify the estimates in the

hypotheses, a reassuring similarity exists between the observations of the numerics
15
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and the conceptual framework of the theory, which was originally motivated by similar

observations in the literature. There is a fairly long induction phase, in which the

initial iterate is guided towards the Newton convergence domain by remaining close

to the physical transient, with relatively small timesteps. There is a terminal phase

which can be made as rapid as the capability of the linear solver permits (which

varies from application to application), in which an iterate in the Newton convergence

domain is polished. Connecting the two is a phase of moderate length during which

the time step is built up towards the Newton limit of 6ma_, starting from a reasonably

accurate iterate. The division between these phases is not always clear cut, though

exogenous experience suggests that it becomes more so when the corrector of § 1 is

iterated towards convergence on each time step. We plan to examine this region of

parameter space in conjunction with an extension of the theory to mixed steady/qJtc

systems (analogs of differential-algebraic systems in the ODE context) in the future.
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